Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Virulence ; 13(1): 1315-1330, 2022 12.
Article in English | MEDLINE | ID: covidwho-20238606

ABSTRACT

Porcine rotavirus (PoRV) is an important pathogen, leading to the occurrence of viral diarrhoea . As the infection displays obvious enterotropism, intestinal mucosal immunity is the significant line of defence against pathogen invasion. Moreover, as lactic acid bacteria (LAB) show acid resistance, bile salt resistance and immune regulation, it is of great significance to develop an oral vaccine. Most traditional plasmid delivery vectors use antibiotic genes as selective markers, easily leading to antibiotic accumulation. Therefore, to select a food-grade marker in genetically engineering food-grade microorganisms is vital. Based on the CRISPR-Cas9D10A system, we constructed a stable auxotrophic Lactobacillus paracasei HLJ-27 (Lactobacillus △Alr HLJ-27) strain. In addition, as many plasmids replicate in the host bacteria, resulting in internal gene deletions. In this study,we used a temperature-sensitive gene editing plasmidto insert the VP4 gene into the genome, yielding the insertion mutant strains VP4/△Alr HLJ-27, VP4/△Alr W56, and VP4/W56. This recombinant bacterium efficiently induced secretory immunoglobulin A (SIgA)-based mucosal and immunoglobulin G (IgG)-based humoral immune responses. These oral mucosal vaccines have the potential to act as an alternative to the application of antibiotics in the future and induce efficient immune responses against PEDV infection.


Subject(s)
Capsid Proteins , Lactobacillus , Animals , Anti-Bacterial Agents , Capsid Proteins/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Lactobacillus/genetics , Rotavirus , Swine
2.
Front Immunol ; 13: 926279, 2022.
Article in English | MEDLINE | ID: covidwho-2055016

ABSTRACT

Dendritic cells (DCs) are professional antigen-presenting cells that can recognize, capture, and process antigens. Fusing molecules targeting DCs with antigens can effectively improve the efficiency with which antigens are recognized and captured by DCs. This targeting strategy can be used for vaccine development to effectively improve the efficiency of antigen recognition and capture by DCs. The targeting sequence of porcine cytotoxic T-lymphocyte associated protein 4 (CTLA4), which binds porcine DCs, was identified in this study. Recombinant Lactobacillus reuteri (L. reuteri) expressing CTLA4-6aa (LYPPPY) and CTLA4-87aa fused to the porcine epidemic diarrhea virus (PEDV) protective antigen core neutralizing epitope (COE) were used to evaluate the ability of the two targeting motifs to bind the B7 molecule on DCs. Our results demonstrate that CTLA4-6aa could bind porcine DCs, and recombinant Lactobacillus expressing the CTLA4-6aa captured by porcine DCs was more efficient than those expressing CTLA4-87aa. In addition, the expression of DC markers, toll-like receptors, and cytokines was significantly higher in the 6aa-COE/L. reuteri-stimulated porcine DCs compared to DCs treated with 87aa-COE/L. reuteri (p<0.01) and recombinant Lactobacillus expressing CTLA4-6aa enhanced the ability of porcine DCs to activate T-cell proliferation. Our analysis of the protein structure revealed that CTLA4-87aa contains intramolecular hydrogen bonds, which may have weakened the intermolecular force between the residues on porcine CTLA4 and that on B7. In conclusion, recombinant Lactobacillus expressing CTLA4-6aa were more efficiently captured by porcine DCs and had a stronger ability to promote DC maturation and enhance T-cell proliferation. The LYPPPY motif is the optimal sequence for binding to porcine DCs. Piglets immunized with recombinant Lactobacillus showed that recombinant Lactobacillus expressing CTLA4-6aa induced significant levels of anti-PEDV-specific IgG and IgA antibody responses. Our study may promote research on DC-targeting strategies to enhance the effectiveness of porcine vaccines.


Subject(s)
Dendritic Cells , Animals , B7 Antigens , CTLA-4 Antigen , Cytokines , Epitopes , Immunoglobulin A , Immunoglobulin G , Lactobacillus , Peptides , Swine
3.
Viruses ; 14(5)2022 04 25.
Article in English | MEDLINE | ID: covidwho-1875796

ABSTRACT

Porcine epidemic diarrhea (PED), characterized by diarrhea, vomiting, and dehydration, is an acute enteric infectious disease of pigs. The disease is caused by porcine epidemic diarrhea virus (PEDV), which infects the intestinal mucosal surface. Therefore, mucosal immunization through the oral route is an effective method of immunization. Lactic acid bacteria, which are acid resistant and bile-salt resistant and improve mucosal immunity, are ideal carriers for oral vaccines. The S1 glycoprotein of PEDV mediates binding of the virus with cell receptors and induces neutralizing antibodies against the virus. Therefore, we reversely screened the recombinant strain pPG-SD-S1/Δupp ATCC 393 expressing PEDV S1 glycoprotein by Lactobacillus casei deficient in upp genotype (Δupp ATCC 393). Mice were orally immunized three times with the recombinant bacteria that had been identified for expression, and the changes of anti-PEDV IgG and secreted immunoglobulin A levels were observed over 70 days. The results indicated that the antibody levels notably increased after oral administration of recombinant bacteria. The detection of extracellular cytokines on the 42nd day after immunization indicated high levels of humoral and cellular immune responses in mice. The above results demonstrate that pPG-SD-S1/Δupp ATCC 393 has great potential as an oral vaccine against PEDV.


Subject(s)
Coronavirus Infections , Lacticaseibacillus casei , Porcine epidemic diarrhea virus , Viral Vaccines , Animals , Antibodies, Viral , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Diarrhea , Mice , Porcine epidemic diarrhea virus/genetics , Swine
SELECTION OF CITATIONS
SEARCH DETAIL